Blood Cells

 $\bullet \bullet \bullet$

"The blood is the life!"

- Bram Stoker's Dracula

Overview

What is blood?

Components:

- Plasma
- Red Blood Cells
- White Blood Cells
- Platelets

Blood Percentages

What is in there anyway?

- "Juice" the liquid part
 - Plasma (~55%)
- "Stuff" the solid parts
 - Red Blood Cells (~45%)
 - White Blood Cells (~1-2%)
 - Platelets (<1%)

Plasma

- Liquid component of blood
 - Mostly water (~92-95%)
 - Other non-cellular blood components
 - Dissolved proteins
 - Glucose
 - Clotting factors
 - Without these, it is "**serum**"
 - Electrolytes
 - Hormones
- Appearance
 - Straw to light amber in color
 - Abnormalities:
 - Brown-red color
 - From hemolysis
 - Opaqueness (can appear milky)
 - From an increased lipid content
 - Darker yellow-amber color
 - From increased bilirubin
- Functions
 - Circulate blood cells and components
 - Coagulation, immunity, blood pressure
 - Circulate cellular waste to be filtered/removed

Plasma Variations

Normal Plasma

- Straw-colored
- Clear

Hemolytic Plasma

- Red-colored due to hemoglobin from lysed/broken cells
- Clear

Lipemic Plasma

- White or milky color
- Opaque

Icteric Plasma

- Darker yellow to amber color from increased bilirubin
- Clear

Plasma can also appear as a combination of these: hemolytic AND lipemic = strawberry milk appearance

Red Blood Cells

- **Erythro**cyte
 - o Erythro- means "red"
- Morphology
 - Normally uniform in size and shape
 - Biconcave disc shape (donut)
 - No nucleus allows flexibility
- Origin
 - Formed in bone marrow
 - ~120 day lifespan
- Function
 - Contain hemoglobin
 - Protein that binds to and carries
 O₂ to tissues and organs
 - Also delivers CO₂ (waste) to lungs
- Conditions
 - Anemia = decreased number of RBCs
 - \blacksquare A- = lack of, absence of
 - -emia = blood

RBCs

• Normal

- Uniform in color and size (biconcave, central pallor
- Mature RBCs have no nucleus
 - Formation and maturation in marrow
 - Nucleus is ejected and dissolved
 - Now "empty" RBCs are flexible and escape portholes in marrow
 - Gain hemoglobin once circulating

Abnormal = Nucleated RBCs (nRBCs)

- Immature RBCs **do** have a nucleus
- Why would we see these?
 - Damaged blood-bone barrier
 - Immature cells escape marrow
 - Hypoxia stimulates RBC production
 - Anemia
 - Hemorrhage
 - CHF
 - Spleen dysfunction
 - Spleen normally filters nRBCs
 - Production of RBCs outside of marrow
 - Liver or spleen can produce RBCs when desperate

RBC Abnormalities

Some examples seen here:

- Polychromasia
- Anisocytosis
- Target cells (codocytes)
- Schistocytes
- Increased/decreased central pallor
- Crenation
 - Osmosis
- Rouleaux
 - "Stacked coins"

Red Blood Cell Abnormalities - Color

Polychromasia

- Poly = multiple
- o chrom = color
- Increased blue stain uptake in some cells on slide due to residual RNA
 - Immature RBCs released too early from bone marrow = <u>reticulocytes</u>
- Conditions where you see this:
 - Hemolytic anemia
 - Hemorrhage
 - Hypoxia
 - Some cancers

Red Blood Cell Abnormalities - Color

Hypochromasia

- Hypo = less than normal
- o chrom = color
- Rim of cytoplasm of RBCs is thinner than normal
 - Area of central pallor is larger
 - This appearance is due to lower hemoglobin content
- Conditions where you see this:
 - Iron deficiency
 - Copper or B6 deficiency
 - Inhibited hemoglobin production

Red Blood Cell Abnormalities - Color

Hyperchromasia

- Hyper = higher than normal
- o chrom = color
- Cells appear a deeper red hue than normal
 - This appearance can be due to higher hemoglobin content
 - Spherocytes
 - Sphere-shaped (not donut) due to membrane
 - Smaller in diameter, so denser
- Conditions where you see this:
 - Hemolytic anemia(RBC membrane defect)
 - Low phosphorus
 - Snake bites

Anisocytosis

- \circ An = not, lack of
- o iso = same/equal
- \circ cyt = cell
- Variation in red blood cell size
- Conditions where you see this:
 - Anemias
 - Iron deficiency
 - Vitamin deficiency
 - Some cardiovascular diseases
 - Liver disease

Macrocytosis

- Macro = large
- \circ cyt = cell
- Central pallor *can* be more difficult to discern
- Conditions where you see this:
 - o B-12 deficiency
 - Liver disease
 - Hypothyroidism
 - Side effect of some medications
 - Bone cancer

Microcytosis

- Micro = small
- \circ cyt = cell
- Central pallor tends to be larger
- Conditions where you see this:
 - Iron deficiency
 - Some types of anemia
 - Lead toxicity

Normal red blood cells

Microcytic anemia

- Poikilocytosis
 - Poikilos = varied
 - \circ cyt = cell
- Abnormal variation in cell shape
 - Used when describing abnormalities in >10% of a cell population
- Can be due to membrane abnormalities
- Can be due to trauma

- Acanthocytes
 - Acantha = thorn
 - \circ cyt = cell
- Also called spur cells
- Spiculated (spiked) RBCs with a few membrane projections of varying size and distribution
 - IRREGULAR spikes
- Conditions where you see this:
 - After splenectomies
 - Liver disease
 - Hypothyroidism
 - o Iron deficiency anemia
 - o DIC

- Echinocytes
 - Echinos = hedgehog, sea urchin
 - \circ cyt = cell
- Crenated cells artifact, throughout slide
- True Burr cells less numerous
- Spiculated (spiked) RBCs with a many small, evenly spaced projections of the membrane
 - REGULAR spikes
- Conditions where you see this:
 - ARTIFACT from EDTA
 - Renal disease, uremia
 - Liver disease
 - Low phosphorus
 - ATP production disorders

- Elliptocytes, Ovalocytes
 - Ellipto = oval
 - Ovalo = from Latin ovum = egg
 - \circ cyt = cell
- Oval or elongated RBCs with blunt ends
 - Varying degrees of elongation
- Conditions where you see this:
 - o Iron deficiency anemia
 - Genetic predisposition
 - Labradors
 - Chows
 - Liver disease
 - o Renal disease

Codocytes

- Codo = bell (shape in blood)
- \circ cyt = cell
- <u>Target cells</u> appearance on slide
 - Dark center of hemoglobin
 - Excess surface membrane
 - "Bull's eye" appearance
- Conditions where you see this:
 - Regenerative anemia
 - o Iron deficiency anemia
 - Liver disease
 - High cholesterol

- Schistocytes
 - Schistos = divided
 - \circ cyt = cell
- RBC fragment
 - o Small, irregular shape
 - o Jagged, with pointed ends
 - Triangular, helmet, comma shapes
 - No central pallor
- Conditions where you see this:
 - Hemolytic anemia
 - Iron deficiency anemia
 - o DIC
 - Mechanical destruction of RBCs passing through fibrin clots

Stomatocytes

- Stoma = mouth
- \circ cyt = cell
- Cell is bowl-shaped in blood
 - Decreased surface area
 - Central pallor forms slit shape
 - Likely artifact unless >10% of RBCs
- Conditions where you see this:
 - Hemolytic anemia
 - Liver disease
 - pH variations (more acidic blood) alter cell permeability

- Keratocytes / Degmacyte
 - Kerato = horn
 - Degma = bite
 - \circ cyt = cell
- Denatured hemoglobin forms clumps (=Heinz bodies) on the edge of the RBCs
- Cells in the spleen phagocytize these clumps, taking a "bite" out of the cell
- Fragmented RBC has one to two projections
 - <u>Blister cell</u> if cytoplasmic membrane connects around vacuole
 - May result in horn-like projections
 - Half-moon or helmet shape = <u>bite cell</u>
- Conditions where you see this:
 - Hemolytic anemia
 - Oxidative damage to hemoglobin

- Dacrocytes
 - Dakruon = teardrop
 - \circ cyt = cell
- Teardrop shaped RBCs
- Thought to be formed after removal of an inclusion by the spleen
 - Splenic pitting
- Conditions where you see this:
 - Bone marrow fibrosis disorders
 - Slide artifact

Red Blood Cell Abnormalities - Inclusions

Heinz Bodies

- Denatured hemoglobin forms clumps on the edge of the RBCs
 - These clumps are Heinz bodies
- Require special staining to visualize
 - o i.e. new methylene blue
- Can appear as single lumpy projection of cell membrane
- Conditions where you see this:
 - o Hemolytic anemia
 - Chronic liver disease
 - Oxidative damage to hemoglobin
 - Consumption of certain foods/chemicals or medications
 - Propylene glycol (prev. in cat food), acetaminophen, garlic, onions

Red Blood Cell Abnormalities - Inclusions

- Howell-Jolly Bodies
- Nuclear remnants (DNA clusters) in the RBCs
- Appear as purple spot within cytoplasm of RBC cells
- Conditions where you see this:
 - Splenic dysfunction
 - Post-splenectomy
 - Severe hemolytic anemia

Red Blood Cell Abnormalities - Arrangement

- Rouleaux
 - French *roule* = roll
- Stacked aggregations of RBCs
- Occurs due to the biconcave shape of RBCs
- Some degree of rouleaux is normal in dogs and cats
- Conditions where you see this:
 - Abnormal quantities of certain proteins
 - Infections
 - Inflammatory disorders
 - Diabetes mellitus

Red Blood Cell Abnormalities - Arrangement

- Agglutination
 - Latin *agglutinare* = to glue together
- Clumping aggregations of RBCs
- Occurs by the formation of antibody-antigen complexes, binding RBCs together
- Conditions where you see this:
 - o IMHA
 - Blood transfusion reaction
 - Slide artifact if not in feathered edge

Abnormal RBC Morphology	Cartoon Image
What am I?	6µm Normal
What am I?	Normal 6µm
What am I?	*
What am I?	*
What am I?	
What am I?	
What am I?	

White Blood Cells

- Leukocyte
 - Leuko- means "white"
- Morphology
 - Varies depending on type of white blood cell
- Origin
 - Formed in bone marrow
 - Present in blood, lymphatic system/tissues, immune system
 - Generally a stable number of WBCs in blood unless stimulated or suppressed
- Function
 - Protect against infection
 - Role in inflammation
 - Role in allergic reactions
- Conditions
 - Leukopenia
 - Leukocytosis

Type of White Blood Cells

Neutrophils	 Most abundant WBC = 60-70% First line of defense against infection Mainly target bacteria and fungus, surrounding & destroying them
Lymphocytes	 B cells, T cells, Natural killer cells = 20-30% of WBCs Produce antibodies, recognize & destroy infected cells and viral cells (including cancer cells)
Monocytes	 2-10% of WBCs Largest of the WBCs Present for chronic infections, have a longer lifespan
Eosinophils	 1-3% of WBCs Generally target larger parasites (worms) Modulate allergic inflammatory reactions
Basophils	 <1% of WBCs Secrete heparin & histamine to defend against parasites & bacteria Mainly responsible for allergic reactions

Pathogen: *enters body*

White blood cell:

Neutrophils

- Originate in bone marrow
- Percentage = 60-70%
- A type of granulocyte
 - o Granules are burgundy purple staining
 - o Granules contain microbicidal agents
- Multi-lobed nucleus
 - Usually 3-5 lobes
 - If more lobes, = hypersegmented
 - Means that cell has been circulating longer in blood
 - If fewer lobes, = hyposegmented
 - Means that cell is immature
 - Bands have no lobes
 - Segmentation occurs as they are exposed to pathogens
 - Increase in bands = "left shift"
- Part of innate immune system
 - Actions are immediate and non-specific (phagocytosis)
 - Cell receptors detect chemicals of infection or inflammation and migrate towards it
 - Kill and digest bacteria and fungi

Adaptive Immune Response

Known Pathogen: *enters body*

Specialized white blood cell:

Lymphocytes

- Originate in spleen, thymus, lymph nodes
- Percentage = 20-30%
- Develop into 3 different types
 - <u>B cells</u> produce antibodies that attack and neutralize bacteria, viruses, and toxins (adaptive)
 - <u>T cells</u> produce enzymes which kill infected cells (adaptive)
 - <u>Natural Killer cells</u> modulate other cell functions, can identify and destroy infected/altered cells (by releasing cytotoxic granules) (innate)
- Spherical nucleus, minimal cytoplasm
 - Dense, dark staining (purple)
 - Nucleus is approximately the size of an RBC
 - Visible cytoplasm is clear (pale blue stain) and minimal
- Adaptive immunity and innate immunity
 - Specific reactions to specific antigens
 - Cells "learn" from previous encounters withforeign invaders
 - NK cells do *not* have antigen-specific receptors, are considered part of innate immune system

Monocytes

- Originate in the liver, spleen, & lymph nodes
 - Circulate in blood for 1-3 days, then move into tissues
 - Large percentage stored in spleen
- Percentage = 2-10%
- Largest of the WBC
 - Once in tissues, differentiate into:
 - Macrophages protect tissues from foreign substances
 - Dendritic cells antigen-presenting cells
- Nucleus is pleomorphic
 - Nucleus can appear kidney-shape, unilobar, or other
 - Non-granulated cytoplasm
 - Cytoplasm blue-grey-purple, often has vacuoles
- Innate immunity and adaptive immunity
 - Phagocytosis uptake, digestion, and destruction of foreign material
 - Antigen presentation microbial fragments
 remaining after phagocytosis are transported to the
 cell surface and can be used in MHC complex as
 antigen
 - Cytokine production anti-inflammatory role after initial inflammatory response

Eosinophils

• Originate in bone marrow

- In blood for <24 hours before migrating to tissues
- Survive in tissues for a couple weeks
- Percentage of WBCs = 1-3%
- A type of granulocyte
 - o Granules are bright pink -red staining
 - Granules release toxic chemicals/enzymes
 - Process = **degranulation**
 - These are toxic to parasite <u>and</u> host
- Bilobed nucleus
- Part of innate immune system
 - Multicellular parasites (worms)
 - Certain infections
 - Allergies and asthma (active in inflammatory processes)

Basophils

- Originate in bone marrow
 - Short lifespan (1-2 days)
- Percentage = 0.5-1%
- A type of granulocyte (largest)
 - Granules are dark purple staining
 - Granules contain histamine
- Bilobed nucleus
- Part of innate immune system
 - Release histamine during allergic reaction or asthma attack, causing inflammation
 - Function similar to mast cells
 - o "Immune surveillance"
 - Detect and destroy some early cancer cells
 - Protect against viruses, microbes, parasitic worms, various venoms

Platelets

- **Thrombo**cyte
 - Thrombo = "clot"
- Morphology
 - No nucleus
 - Fragments of cytoplasm
 - Circulating platelets = biconvex discs
 - Activated platelets = cell membrane projections
 - About 20% the size of RBCs
 - Purple staining
- Origin
 - Formed from megakaryocytes in bone marrow or lung, circulate 8-9 days in blood
- Function
 - Hemostasis
 - Physically plug hole in vessel
 - Activation of other clotting factors
 - o Some innate and adaptive immune responses
- Conditions
 - Thrombocytopenia
 - Thrombocytosis

Platelets

- Normal (Idexx) reference ranges are
 - o Dog: 148K 484K
 - Cat: 151K 600K
- Abnormalities can be related to
 - o Size
 - Giant platelets
 - Number present in blood
 - Thrombocytopenia
 - Manual platelet counts are performed when the number is < 200K
 - Thrombocytosis
 - Arrangement
 - Platelet clumping

Platelet Abnormalities - Size

- Giant platelets
 - AKA: macroplatelet
- These are often (but not always)
 immature platelets produced in response
 to a low platelet count
- May also be congenital
 - Inherited macrothrombocytopenia
 - Cavalier King Charles Spaniels
 - Norfolk Terriers, Cairn Terriers

Platelet Abnormalities - Number

Thrombocytopenia

- \circ Thrombo = clot
- \circ Cyt = cell
- Penia = deficiency
- Normal (Idexx) reference ranges are
 - Dog: 148K 484K
 - Cat: 151K 600K
- Conditions where we see this:
 - o Acquired, usually immune-mediated
 - ITP
 - Drugs, toxins
 - Bone marrow disorders
 - Inherited
 - Gray collies genetic, cyclical
 - Sighthounds
 - Artifact/Iatrogenic
 - Due to platelet clumping
 - Due to hemodilution

Platelet Abnormalities - Number

Thrombocytosis

- \circ Thrombo = clot
- \circ Cyt = cell
- Osis = condition, can mean increase
- Normal (Idexx) reference ranges are
 - Dog: 148K 484K
 - Cat: 151K 600K
- Conditions where we see this:
 - Response to epinephrine
 - Spleen releases stored platelets
 - As a reaction to another disease/disorder
 - Inflammation, infection
 - Blood loss, tissue damage
 - Certain drugs
 - Cushing's Disease (hyperadrenocorticism)
 - Cancer
 - Bone marrow disease
 - Increased number of megakaryocytes

Platelet Abnormalities - Arrangement

Clumping

- Occurs when the platelets stick together in clusters
- For the most part, not clinically relevant to diagnosis
- Oftens causespseudothrombocytopenia
 - Clumped platelets result in an artificially low platelet count on blood machines
- Frequently seen in:
 - Traumatic venipuncture
 - Platelets are activated
 - Reaction to EDTA (uncommon)
 - Anticoagulant in LTT causes reactionary clumping of platelets

Review

Red Blood Cells

- Uniform in size and shape
- Biconcave disc shape
- No nucleus when mature
- Have hemoglobin molecules which carry oxygen to tissues and return CO2 to lungs

White Blood Cells

- Neutrophils
 - Segmented nucleus
 - Granulocyte
 - o Immediate, innate action
- Lymphocytes
 - Large round nucleus
 - o B, T, and NK cells
 - Adaptive and innate action
- Monocytes
 - Pleomorphic nucleus
 - Macrophages & dendritic cells
 - Innate and adaptive action
- Eosinophils
 - Bilobed nucleus
 - o Granulocyte, pink-staining
 - o Innate action

Platelets

- Platelets
 - Hemostasis function
 - O No nucleus
 - Innate and adaptive action

WBC Continued...

- Basophils
 - o Bilobed nucleus
 - Granulocyte,purple-staining
 - Innate action

Thanks!

 $\bullet \bullet \bullet$