# Veterinary CPR

## What is CPR?

<u>Cardiopulmonary</u> <u>Resuscitation</u>

#### Some facts:

- When CPA results from a long-term/chronic disease, CPR is less successful
- When CPA is due to an acute condition, more likely to get a successful outcome
- CPA from or during anesthesia also has a better prognosis
- Successful ROSC rates: 35-45%
- Survival to discharge rates: 2-10%

**CPA** = cardiopulmonary arrest

**ROSC** = return of spontaneous circulation

## **5 Domains**

- 1. Prevention and Preparedness
- 2. Basic Life Support
- 3. Advanced Life Support
- 4. Monitoring
- 5. Post-Cardiac Arrest Care

## Prevention and Preparedness

# 1. Prevention and Preparedness



- Standardized and Regularly Stocked Crash Cart
- Cognitive Aids and CPR Algorithms Available
- Continuing Education of Staff
- Assigning Code Status to Every Patient

### **AAVEC Crash Cart**

- In main Treatment Room
- Contains all emergency supplies and drugs
- Mobile can be wheeled to any location
- Checked daily (and after each use)
   and restocked by assistants\*

\*ANYONE can and should take a free moment and check/stock the Crash Cart





- ECG machine and leads with defibrillator
- Suction machine with tubing and red rubber catheters
- Squeeze bag for fluids
- ET tube gauze ties
- Prepared IVC set up
- Alcohol, Hydrogen Peroxide, and Ultrasound Gel
- Cognitive Aids and Algorithms
   Reference Sheets





- Endotracheal (ET) tubes
- Laryngoscopes and blades
- Syringes, Needles
- Flushes
- Blades
- IV catheters, IVC supplies
- Emergency Drugs
  - Atropine
  - Epinephrine
  - Sodium Bicarbonate
  - Dextrose 50%



- Butterfly catheters
- Blood tubes
- Bandage material
- Sterile and non-sterile lube
- ECG pads
- Red rubber catheters, connectors
- Fluid bag
- Bulb syringe
- Hypertonic NaCl
- EMMA capnograph



- Bag valve mask (Ambu bag)
- Extra tubing
- Large syringes
- Chest tap kits
- Hetastarch bag
- Extra hypertonic NaCl
- Reserve stock of other items

# Cognitive Aids & CPR Algorithms

- Laminated Sheets
- Kept on Crash Cart for easy access
- Quick reference "cheat sheets"

#### **CPR Algorithm**



Reprinted with permission from the Veterinary Emergency & Critical Care Society (veccs.org) RECOVER Initiative CPR Algorithm.

#### **CPR Algorithm**



Reprinted with permission from the Veterinary Emergency & Critical Care Society (veccs.org) RECOVER Initiative CPR Algorithm.

## **CPR Algorithm**

- Step-by-step instructions
- Provides easy checklist during emergency event

#### **CPR Emergency Drugs and Doses**

|                            |                        | Weight (kg)  | 2.5  | 5    | 10  | 15   | 20  | 25   | 30  | 35   | 40  | 45   | 50  |
|----------------------------|------------------------|--------------|------|------|-----|------|-----|------|-----|------|-----|------|-----|
|                            |                        | Weight (lb)  | 5    | 10   | 20  | 30   | 40  | 50   | 60  | 70   | 80  | 90   | 100 |
|                            | DRUG                   | DOSE         | ml   | ml   | ml  | ml   | ml  | ml   | ml  | mi   | ml  | ml   | ml  |
| Anti-<br>Arrhyth Arrest    | Epi Low (1:1000)       | 0.01 mg/kg   | 0.03 | 0.05 | 0.1 | 0.15 | 0.2 | 0.25 | 0.3 | 0.35 | 0.4 | 0.45 | 0.5 |
|                            | Epi High (1/1000)      | 0.1 mg/kg    | 0.25 | 0.5  | 1   | 1.5  | 2   | 2.5  | 3   | 3.5  | 4   | 4.5  | 5   |
|                            | Vasopressin (20 U/m/)  | 0.8 U/kg     | 0.1  | 0.2  | 0.4 | 0.6  | 0.8 | 1    | 1.2 | 1.4  | 1.6 | 1.8  | 2   |
|                            | Atropine (0.54 mg/ml)  | 0.05 mg/kg   | 0.25 | 0.5  | 1   | 1.5  | 2   | 2.5  | 3   | 3.5  | 4   | 4.5  | 5   |
|                            | Amiodarone (50 mg/ml)  | 5 mg/kg      | 0.25 | 0.5  | 1   | 1.5  | 2   | 2.5  | 3   | 3.5  | 4   | 4.5  | 5   |
|                            | Lidocaine (20 mg/ml)   | 2-8 mg/kg    | 0.25 | 0.5  | 1   | 1.5  | 2   | 2.5  | 3   | 3.5  | 4   | 4.5  | 5   |
| Reversal                   | Naloxone (0.4 mg/ml)   | 0.04 mg/kg   | 0.25 | 0.5  | 1   | 1.5  | 2   | 2.5  | 3   | 3.5  | 4   | 4.5  | 5   |
|                            | Flumazenii (0.1 mg/ml) | 0.01 mg/kg   | 0.25 | 0.5  | 1   | 1.5  | 2   | 2.5  | 3   | 3.5  | 4   | 4.5  | 5   |
|                            | Atipamezole (5 mg/ml)  | 50 ug/kg     | 0.03 | 0.05 | 0.1 | 0.15 | 0.2 | 0.25 | 0.3 | 0.35 | 0.4 | 0.45 | 0.5 |
| <b>Defib</b><br>Monophasio | External Defib (J)     | 2-10 J/kg    | 20   | 30   | 50  | 100  | 200 | 200  | 200 | 300  | 300 | 300  | 360 |
|                            | Internal Defib (J)     | 0.2-1 J/kg   | 2    | 3    | 5   | 10   | 20  | 20   | 20  | 30   | 30  | 30   | 50  |
| Defib<br>Biphasic          | External Defib (J)     | 2-4 J/kg     | 6    | 15   | 30  | 50   | 75  | 75   | 100 | 150  | 150 | 150  | 150 |
|                            | Internal Defib (3)     | 0.2-0.4 J/kg | 1    | 2    | 3   | 5    | 6   | 8    | 9   | 10   | 15  | 15   | 15  |

Reprinted with permission from the Veterinary Emergency & Critical Care Society (veccs.org) RECOVER Initiative CPR Emergency Drugs and Doses chart.

## **Emergency Drug Doses**

- Gives high and low dose for various weights
- Categorizes drugs by function
- Also includes defibrillation protocols

## **Continuing Education**

- RECOVER Initiative
  - Evidence-based formulation of protocols and CPR training
  - <u>REassessment</u>
  - <u>Campaign</u>
  - On
  - <u>VE</u>terinary
  - <u>R</u>esuscitation





### **Patient Code Status**

- Assigned at Triage/Intake
- Can be altered during patient's stay in hospital

- DNR = Do Not Resuscitate
- BLS = Basic Life Support
- ALS = Advanced Life Support



## Basic Life Support

## 2. Basic Life Support



- Recognize CPA
   (<u>c</u>ardio<u>p</u>ulmonary <u>a</u>rrest)
- Chest Compressions
- Airway Management
- Ventilation/Breathing

## Recognizing CPA

- CPA = <u>Cardiopulmonary Arrest</u>
- Assess unresponsive patients
  - This should be **10-15s** maximum
  - Auscult heart, don't spend time searching for pulses at this point

- If CPA is confirmed, immediately begin resuscitation measures
  - <u>C</u>irculation
  - <u>A</u>irway
  - <u>B</u>reathing



## **Chest Compressions**

- Patient in lateral recumbency
  - Barrel-chested dogs = dorsal recumbency
- 100-120 compressions per minute (cat and dog)
  - "Stayin' Alive"
  - "Another One Bites the Dust"
- Compressions should be ½ to ½ the width of the chest
  - This is TRAUMATIC
  - Can cause broken ribs, pulmonary edema
- Allow full chest expansion/recoil between compressions
- Uninterrupted 2-minute cycles





## Chest Compressions

#### Hand placement variations

- Larger dogs
  - Compressions over widest portion of thorax
- Smaller dogs/keel-chested dogs/cats
  - Compressions directly over heart
- Cats and small animals
  - +/- Circumferential compressions

#### Staff posture

- Superimposed palms
- Locked elbows
- Shoulders directly above patient
- Bending should be at the waist
- 2-minute limit before switching out









## **Airway Management**

- Intubation should occur in lateral recumbency
- Chest compressions should <u>not</u> be stopped to achieve intubation
- Laryngoscope should be used to visualize trachea
- Cuff of ET tube should be inflated
- Confirmation of placement should be made by:
  - Thoracic auscultation
  - Visualization
  - Palpation
  - ETCO<sub>2</sub> monitoring



## Ventilation (Breathing)

- Intubate as soon as possible without disrupting chest compressions
- Give 1 breath every 6 seconds
- Tidal volume should be 10ml/kg
- Inspiratory time should be 1 second
- Do <u>not</u> exceed 20 cm H<sub>2</sub>O on the manometer
- If intubation is not an option, 2 breaths after every 30 compressions can be given mouth-to-snout



## Advanced Life Support

## 3. Advanced Life Support



- ECG to Characterize Arrhythmias
- ETCO<sub>2</sub> Measured
- IV Access Obtained
  - IO, IT as alternatives
- Drugs or Defibrillation

## **ECG Obtained**

- Attachment placement
  - White Right front
  - o Black Left front
  - Red Left rear
  - Green\* Right rear
    - Not typically included
  - Mnemonics\* to remember location
- Prefer to use ultrasound gel, NOT alcohol (in case of defibrillation)
- Evaluate during cycle rotation
  - Artifact from motion of compressions
  - Asystole?
  - o PEA?
  - Ventricular fibrillation?





## **ETCO2** Measured

- Capnography = measurement of end-tidal CO<sub>2</sub>
  - Partial pressure/amount of CO<sub>2</sub>
     released at the end of expiration
  - Indicator of cardiac output
  - Can confirm appropriate ET tube placement
  - Normal is 35-45 mmHg
  - A "now" vital sign, no lag

#### Waveform

- A-B inhalation
- B-C start of exhalation
- o C-D exhalation
- <u>D</u> where ETCO<sub>2</sub> value is recorded
- o D-E beginning of inhalation





### **ETCO2** Measured

- How does this help with CPR?
  - Remember, this is a "now" vital sign
  - $\circ$  If high patient is breathing out more  $CO_2$ 
    - We think we want to speed ventilation
    - Actually, should continue normal ventilation unless it continues climbing
    - If it spikes (drastic increase of >20mmHg, or reaches >45mmHg) = ROSC
  - If low patient is not breathing out enough
     CO<sub>2</sub>
    - We think we want to slow ventilation
    - Actually sign of shock ETCO<sub>2</sub> relies on perfusion (thus is not accurate)
    - If <10-12, compressions are not adequate





### **IV Access Obtained**

- Without stopping any of the other resuscitation efforts, we want IV access
- Place peripheral IV catheter
  - Sometimes more than one person is trying simultaneously
  - May require venous cut-down by DVM
- Alternative drug access routes:
  - o **IT** intratracheal
    - Epinephrine
  - o **IO** intraosseous
    - Catheter placement



## **Drugs Administered**

- IV fluids based on case
  - Can help with perfusion in hypovolemia
  - Possibility for overload due to poor contractions
- If patient arrested under anesthesia, use reversal agents
- Naloxone for opioids
  - Butorphanol
  - Hydromorphone
  - Buprenorphine
  - Fentanyl
  - Morphine
  - Methadone

- Antisedan
  - Dexmedetomidine





- Flumazenil for benzodiazepines
  - Diazepam
  - Midazolam









## **Drugs Administered**

- Epinephrine
  - Primary drug to reverse cardiac arrest
    - <u>Vasopressor</u> increases arterial blood pressure and coronary blood perfusion during CPR
    - Good bioavailability in IT administration
    - Low dose vs. high dose\*
- Atropine
  - Used to increase heart rate (especially in patients with increased vagal tone and asystole/PEA)
    - Adverse reactions at high doses
    - Not much conclusive evidence for benefits
- Sodium Bicarbonate (NaHCO<sub>3</sub>-)
  - Treats respiratory acidosis (CO<sub>2</sub> retention)
    - Used more commonly in extended CPR





\*\* Flushing Meds - use larger volume of flush to get meds into body!

## **Defibrillation**

- Used for ventricular fibrillation
  - Abnormal heart rhythm
  - Disorganized heart signals that causes ventricles to twitch but not pump blood.
  - Shock heart to try and re-establish normal electrical impulses
- After at least two 2-minute BLS cycles

#### CAUTION!

- Do <u>NOT</u> touch the patient (all "CLEAR")
- Do <u>NOT</u> use alcohol (flammable)
- $\circ$  Do <u>NOT</u> have free-flowing O<sub>2</sub> (flammable)
- Do <u>NOT</u> be on a conductive surface (metal)
- Do <u>NOT</u> have patient wet/in water (conduction)



## **Open-Chest CPR Video**

www.atdove.org/video/open-chest-cpr

## **Open-Chest CPR - Review**

- Usually > 10 minutes of CPR efforts
- Fast scrub/skin preparation
- Lateral incision made into side with scalpel blade, then Mayo scissors
  - Dorsal aspect of chest to sternum
  - Approximately at rib space 5
- Enter the pleura (membranes covering lungs and lining the chest cavity)
  - Be careful of lungs
- Reach in and find heart to begin internal massage/compressions
  - May need rib spreaders
  - May need to exteriorize heart from pericardial sac
- Compressions should start at apex (bottom) and squeeze cranially to base of heart (top)
  - Depending on patient size, may need both hands
- If successful resuscitation, treat as lateral thoracotomy post-CPR
  - o Cavity lavage, place chest tube, achieve suction, then additional post-arrest care

## **Special Cases**

Patients with CHF (congestive heart failure) often have pulmonary edema (fluid build-up in the lungs).

This may obstruct ventilation.

#### Ways to clear fluid:

- Suction of ET tube
- "Dumping" patient
  - Detach from oxygen and invert patient
  - In head-down position, fluid may freely flow out of ET tube



## Monitoring

## 4. Monitoring



- ECG
- ETCO<sub>2</sub>
- Oxygenation Levels
- Vitals/Temperature
- Blood Pressure

# ECG, ETCO<sub>2</sub>, Oxygenation

- ECG
  - Continue monitoring heart rhythm and rate
  - Observe for recurrence of CPA
- ETCO<sub>2</sub>
  - Continue monitoring CO<sub>2</sub> levels as long as patient is intubated
- Oxygenation
  - Use pulse oximeter ("pulse ox") as long as patient tolerates it
    - Ideal oxygen saturation is above 95%
    - Supplement O<sub>2</sub> as needed
      - May require Oxygen Cage
      - May require nasal cannula(s)







### Vitals, Blood Pressure

- Monitor vitals as you would any critical patient
  - More frequent intervals as determined by doctor
  - Want to pay close attention to changes in status that may indicate decline
  - Use pressors as needed for hypotension

| Vitals                  | Canine              | Feline            |
|-------------------------|---------------------|-------------------|
| Temperature             | 99.0-102.5          | 99.0-102.5        |
| Heart Rate              | 80-140, size of dog | 180-200           |
| Respiratory Rate        | 16-40               | 16-40             |
|                         |                     |                   |
| Mucous Membranes        | Pink                | Light pink - Pink |
| Capillary Refill Time   | 1-2 seconds         | 1-2 seconds       |
| SPO2                    | 95-100%             | 95-100%           |
| Systolic Blood Pressure | 100-150 mmHg        | 100-150 mmHg      |

**Blood Pressure - Equipment** 

- Doppler machine
  - Ultrasonic detection of arterial blood flow
  - Obtains systolic pressure
- Sphygmomanometer
  - "Squeezy thing"
  - Used to inflate cuff and occlude vessel
  - Contains dial to read measurement
- Ultrasound gel
  - Used as medium for ultrasound waves
- Blood pressure cuff
  - Numerous sizes
  - What side you put against the skin and its alignment does matter
  - Always check for leaks



**Blood Pressure - Using the Doppler** 

- Choosing the correct size cuff
  - Width should be ~40% of the circumference of the appendage for dogs
  - ~30% of the circumference for cats
  - Follow sizing guidelines on interior of cuff to ensure appropriate size
  - Line up indicator ARROW with artery
  - Cuff should be proximal to probe location
- Clip fur of the desired location
  - Posterior aspect of metacarpal area
  - Posterior aspect of metatarsal area
  - Ventral aspect of tail
- Apply ultrasound gel to probe (be generous)
  - Ensure the correct side is against the patient
  - Orient the probe parallel to the blood flow



## **Blood Pressure - Using the Doppler**

- Connect the cuff to the sphygmomanometer
  - That's the "squeezy thing"
- Confirm placement by listening for pulses
  - Consistent "whoosh whoosh" sounds
  - Can confirm beat/rhythm by palpating heart
  - Adjust probe as needed to hear pulses
- Inflate the cuff until you no longer hear pulses
  - Then, slowly deflate the cuff while watching the sphygmomanometer
  - Note the reading when you first hear the pulse return
  - This is your systolic pressure



### **Blood Pressure - Using the Doppler**

- Get several consecutive measurements
  - Obtain at least three readings
  - Average results and record systolic pressure
- Be consistent!
  - Use the same cuff size for subsequent BPs
  - Use the same limb for subsequent readings
  - Exceptions:
    - New IVC placed in limb being used
    - Incorrectly measured cuff initially
- Patient position matters
  - Ideal positioning is lateral recumbency, with cuff on the "top" limb at the level of the heart
  - Restraint can stress patients and elevate their BP
  - Find a comfortable, relaxed position for the patient if they will not tolerate being lateral





### 5. Post-Cardiac Arrest Care



#### Continue monitoring all the things!

- ECG
- ETCO<sub>2</sub>
- Oxygenation Levels
- Vitals/Temperature
- Blood Pressure

#### **AND**

- Bloodwork
- Neurologic Support

### Bloodwork

#### Lactate

- Levels can rise dramatically in shock and cardiopulmonary arrest
- Usually resolve with appropriate treatment

#### Glucose Levels

- Hyperglycemia following trauma increases mortality
- Hyperglycemia may indicate poor neurological outcome

#### Blood Gases

 Can measure effects of inadequate blood supply during CPA



### Neurologic Support

- Anoxic Brain Injury
  - Time-sensitive
  - Injury occurs after 4 minutes without oxygen
- Cerebral Edema
  - May occur from hypoxia followed by the inflammatory response during reperfusion
  - Osmotic agents can reduce edema
    - Hypertonic NaCl
- Seizures
  - May occur in anytime, but most likely in first three days after arrest
    - Prophylactic control





# The CPR Team

## The CPR Team

| Role                 | Who?              | Tasks                                                                                     |
|----------------------|-------------------|-------------------------------------------------------------------------------------------|
| CPR Leader           | DVM or Technician | Organize CPR                                                                              |
| Compressions         | Anyone            | Perform chest compressions, rotating 2-minute cycles                                      |
| Intubator            | DVM*              | Intubate patient                                                                          |
| Ventilation          | Anyone            | Manage O <sub>2</sub> machine<br>Ventilate patient                                        |
| Crash Cart, Supplies | Anyone            | Plug in equipment (ECG, Suction) Attach ECG leads Set up IVC, get stool for CPR           |
| Venous Access        | Technician        | Place IVC<br>Administer drugs per DVM                                                     |
| Record Keeper        | Anyone            | Document events,<br>Record times, drugs, drugs doses<br>and routes, time of ROSC or death |

### **Circle of Communication**

- Good communication during CPR is <u>vital</u> to success
- Be clear and specific
  - Give commands and use names
    - "Jennifer, start chest compressions."
    - "Michael, give 2ml Epi IV."
    - "Courtney, get me another 20g IVC."
  - If you are responding, confirm and repeat out loud the command/task that you are performing
    - Jennifer: "I'm starting chest compressions. I need a stool."
    - Michael: "Drawing up 2ml Epinephrine." and then "Giving 2ml Epinephrine IV."
    - Courtney: "I'm getting the 20g IVC for Sara." and then "Here is the 20g IVC."
  - This ensures that
    - The proper instructions were heard and followed
    - The record keeper can keep track of what is happening
  - Try to reduce extraneous chatter there is a LOT going on!

## **Outcomes and Debriefing**

- Try not to take it personally if CPR efforts fail
- Debriefing afterwards and discussing what went right and wrong can help improve future CPR efforts
- Remember, you can't really make the patient more dead





# Thanks!